
📈 StockPulse 

Github: https://github.com/KhawajaAbdullah2000/StockPulse_Dot_Net_Redis/​

​
 

1.​Project Overview 
StockPulse is a .NET 8 Web API project designed to simulate real-time stock price 
tracking using Redis as a high-performance in-memory database. The project 
demonstrates how financial applications can manage fast-moving data efficiently while 
maintaining scalability and responsiveness. This application uses Redis TimeSeries 
accessed using Docker for storing stock price history and sorted sets for leaderboards, 
providing a practical and modern backend solution. 
 
 
 
 
 
 
 
 
 
 

https://github.com/KhawajaAbdullah2000/StockPulse_Dot_Net_Redis/


2.​Problem it Solves 
Traditional relational databases struggle when handling high-frequency financial data such as 
stock price updates. Operations like calculating top gainers/losers or storing historical data can 
become slow and resource-intensive. StockPulse solves this by leveraging Redis, which 
provides: 

●​ High-speed data ingestion for stock prices.​
 

●​ Efficient retrieval of time-series data for historical trends.​
 

●​ Real-time leaderboards to identify market winners and losers instantly.​
 This makes it ideal for financial analytics, dashboards, or learning how real trading 
systems might manage data. 

 

3.​Technology Stack 
●​ .NET 8 Web API – Core backend framework.​

 
●​ C# – Programming language.​

 
●​ Redis (via Docker) – In-memory database with TimeSeries and Sorted Sets.​

 
●​ StackExchange.Redis – Redis client for .NET.​

 
●​ NRedisStack – Provides Redis modules support (TimeSeries, Bloom, Graph, 

etc.).​
 

●​ Docker – Used to run Redis locally in a containerized environment. 
 
 

 

 
 
 
 
 

 
 
 
 



4.​Key Features 
●​ 📈 Add stock prices in real time via API.​

 
●​ 📜 Retrieve stock price history using Redis TimeSeries.​

 
●​ 🏆 Leaderboard APIs to fetch top gainers and top losers.​

 
●​ 🐳 Dockerized Redis setup for quick and portable development.​

 
●​ 🔌 RESTful endpoints following clean architecture principles. 

 
 

5.​How it Works 
 

●​ A user or service sends a stock update (e.g., symbol = MEZN, name= Meezan) to the 
API. 

 

 

 

 

 

 

​
 

●​ The API stores this in Redis TimeSeries, maintaining a full price history.​
 

●​ The API also updates a Redis Sorted Set to track percentage changes for leaderboard 
calculations​
 

●​ Users can query:​
-Stock history (/api/stocks/history/{symbol})​
-Top gainers (/api/stocks/leaders?losers=false)​
-Top losers (/api/stocks/leaders?losers=true) 



​
 

●​ Redis, being in-memory, ensures fast reads/writes and supports real-time analytics.​
 

 

 


	📈 StockPulse 
	1.​Project Overview 
	2.​Problem it Solves 
	3.​Technology Stack 
	 
	4.​Key Features 
	5.​How it Works 

