~/ StockPulse

Github: https://github.com/KhawajaAbdullah2000/StockPulse Dot Net Redis/

s / My Redis Stack Database dbO &

All Key Types Q Bulk Actions

Il Columns B
SET | tickers
tickers No limit 80B Length:2 TTL: Mo limit
No limit
No limit
- Member
SORTED SET No limit
HASH tic A No limit
HASH q 1 No limit

No limit

No limit

>_ ¢l [3) CommandHelper [T} Profile @ Let us know what you think

1. Project Overview

StockPulse is a .NET 8 Web API project designed to simulate real-time stock price
tracking using Redis as a high-performance in-memory database. The project
demonstrates how financial applications can manage fast-moving data efficiently while
maintaining scalability and responsiveness. This application uses Redis TimeSeries
accessed using Docker for storing stock price history and sorted sets for leaderboards,
providing a practical and modern backend solution.

@ Swagger Select a definition [JEETETMER]

StockPulse AP @

Leaders
Japifleaders/gainers
Japifleaders/losers
Quotes
Japifquotes/{symbol}/latest
Japi/quotes/{symbol}/history
Tickers
Japiftickers

Japiftickers

| Japi/tickers/{symbol}

Schemas

TickerDto >

https://github.com/KhawajaAbdullah2000/StockPulse_Dot_Net_Redis/

2. Problem it Solves

Traditional relational databases struggle when handling high-frequency financial data such as
stock price updates. Operations like calculating top gainers/losers or storing historical data can
become slow and resource-intensive. StockPulse solves this by leveraging Redis, which
provides:

e High-speed data ingestion for stock prices.

e Efficient retrieval of time-series data for historical trends.

e Real-time leaderboards to identify market winners and losers instantly.

This makes it ideal for financial analytics, dashboards, or learning how real trading
systems might manage data.

3. Technology Stack

e .NET 8 Web API — Core backend framework.

e C# - Programming language.

e Redis (via Docker) — In-memory database with TimeSeries and Sorted Sets.
e StackExchange.Redis — Redis client for .NET.

e NRedisStack — Provides Redis modules support (TimeSeries, Bloom, Graph,
etc.).

e Docker — Used to run Redis locally in a containerized environment.

/’7\\//

ASP.NETWeb API

4.Key Features

e ./ Add stock prices in real time via API.

e ' Retrieve stock price history using Redis TimeSeries.

e 'V Leaderboard APIs to fetch top gainers and top losers.

e =¥ Dockerized Redis setup for quick and portable development.

e 4 RESTful endpoints following clean architecture principles.

5. How it Works

e A user or service sends a stock update (e.g., symbol = MEZN, name= Meezan) to the
API.

Paramsters

e The API stores this in Redis TimeSeries, maintaining a full price history.

e The API also updates a Redis Sorted Set to track percentage changes for leaderboard
calculations

e Users can query:
-Stock history (/api/stocks/history/{symbol})
-Top gainers (/api/stocks/leaders?losers=false)
-Top losers (/api/stocks/leaders?losers=true)

fapiftickers

Parameters

Mo parameters.

Responses

Request URL
http: //localhost : 5217 fapd/tickers

server rasganes

Code Detall

200

Response bady

[
1
aymbol™s "AAPL”,
“rame”: "Apple”

13
1
aymbol®: “TSLA",
*nme’ sla®
b
"IN,
Meezan™

Responss headera

e Redis, being in-memory, ensures fast reads/writes and supports real-time analytics.

My Redis Stack Detabase
All ey Types

Toal: 11

@ Add Fields:

	📈 StockPulse
	1.​Project Overview
	2.​Problem it Solves
	3.​Technology Stack
	
	4.​Key Features
	5.​How it Works

